Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10237, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702505

ABSTRACT

Enzymatic degradation of algae cell wall carbohydrates by microorganisms is under increasing investigation as marine organic matter gains more value as a sustainable resource. The fate of carbon in the marine ecosystem is in part driven by these degradation processes. In this study, we observe the microbiome dynamics of the macroalga Fucus vesiculosus in 25-day-enrichment cultures resulting in partial degradation of the brown algae. Microbial community analyses revealed the phylum Pseudomonadota as the main bacterial fraction dominated by the genera Marinomonas and Vibrio. More importantly, a metagenome-based Hidden Markov model for specific glycosyl hydrolyses and sulphatases identified Bacteroidota as the phylum with the highest potential for cell wall degradation, contrary to their low abundance. For experimental verification, we cloned, expressed, and biochemically characterised two α-L-fucosidases, FUJM18 and FUJM20. While protein structure predictions suggest the highest similarity to a Bacillota origin, protein-protein blasts solely showed weak similarities to defined Bacteroidota proteins. Both enzymes were remarkably active at elevated temperatures and are the basis for a potential synthetic enzyme cocktail for large-scale algal destruction.


Subject(s)
Cell Wall , Fucus , Metagenomics , Cell Wall/metabolism , Fucus/metabolism , Fucus/genetics , Fucus/microbiology , Metagenomics/methods , Bacteroidetes/genetics , Bacteroidetes/enzymology , Metagenome , Microbiota , Phylogeny
3.
Front Microbiol ; 14: 1130018, 2023.
Article in English | MEDLINE | ID: mdl-37152725

ABSTRACT

The suomilide and the banyasides are highly modified and functionalized non-ribosomal peptides produced by cyanobacteria of the order Nostocales. These compound classes share several substructures, including a complex azabicyclononane core, which was previously assumed to be derived from the amino acid tyrosine. In our study we were able to isolate and determine the structures of four suomilides, named suomilide B - E (1-4). The compounds differ from the previously isolated suomilide A by the functionalization of the glycosyl group. Compounds 1-4 were assayed for anti-proliferative, anti-biofilm and anti-bacterial activities, but no significant activity was detected. The sequenced genome of the producer organism Nostoc sp. KVJ20 enabled us to propose a biosynthetic gene cluster for suomilides. Our findings indicated that the azabicyclononane core of the suomilides is derived from prephenate and is most likely incorporated by a proline specific non-ribosomal peptide synthetase-unit.

4.
Front Microbiol ; 13: 1005625, 2022.
Article in English | MEDLINE | ID: mdl-36478870

ABSTRACT

Actinobacteria are among the most prolific producers of bioactive secondary metabolites. In order to collect Arctic marine bacteria for the discovery of new bioactive metabolites, actinobacteria were selectively isolated during a research cruise in the Greenland Sea, Norwegian Sea and the Barents Sea. In the frame of the isolation campaign, it was investigated how different sample treatments, isolation media and sample-sources, such as animals and sediments, affected the yield of actinobacterial isolates to aid further isolation campaigns. Special attention was given to sediments, where we expected spores of spore forming bacteria to enrich. Beside actinobacteria a high share of bacilli was obtained which was not desired. An experimental protocol for down-scaled cultivation and extraction was tested and compared with an established low-throughput cultivation and extraction protocol. The heat-shock method proved suitable to enrich spore-, or endospore forming bacteria such as bacilli. Finally, a group bioactive compounds could be tentatively identified using UHPLC-MS/MS analysis of the active fractions.

5.
Mar Drugs ; 20(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35621928

ABSTRACT

Treatment options for infections caused by antimicrobial-resistant bacteria are rendered ineffective, and drug alternatives are needed-either from new chemical classes or drugs with new modes of action. Historically, natural products have been important contributors to drug discovery. In a recent study, the dimeric naphthopyrone lulworthinone produced by an obligate marine fungus in the family Lulworthiaceae was discovered. The observed potent antibacterial activity against Gram-positive bacteria, including several clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, prompted this follow-up mode of action investigation. This paper aimed to characterize the antibacterial mode of action (MOA) of lulworthinone by combining in vitro assays, NMR experiments and microscopy. The results point to a MOA targeting the bacterial membrane, leading to improper cell division. Treatment with lulworthinone induced an upregulation of genes responding to cell envelope stress in Bacillus subtilis. Analysis of the membrane integrity and membrane potential indicated that lulworthinone targets the bacterial membrane without destroying it. This was supported by NMR experiments using artificial lipid bilayers. Fluorescence microscopy revealed that lulworthinone affects cell morphology and impedes the localization of the cell division protein FtsZ. Surface plasmon resonance and dynamic light scattering assays showed that this activity is linked with the compound's ability to form colloidal aggregates. Antibacterial agents acting at cell membranes are of special interest, as the development of bacterial resistance to such compounds is deemed more difficult to occur.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Bacteria , Fungi , Gram-Positive Bacteria , Microbial Sensitivity Tests , Polymers/pharmacology
6.
Molecules ; 26(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34946641

ABSTRACT

As part of our search for bioactive metabolites from understudied marine microorganisms, the new chlorinated metabolite chlovalicin B (1) was isolated from liquid cultures of the marine basidiomycete Digitatispora marina, which was collected and isolated from driftwood found at Vannøya, Norway. The structure of the novel compound was elucidated by spectroscopic methods including 1D and 2D NMR and analysis of HRMS data, revealing that 1 shares its molecular scaffold with a previously isolated compound, chlovalicin. This represents the first compound isolated from the Digitatispora genus, and the first reported fumagillin/ovalicin-like compound isolated from Basidiomycota. Compound 1 was evaluated for antibacterial activities against a panel of five bacteria, its ability to inhibit bacterial biofilm formation, for antifungal activity against Candida albicans, and for cytotoxic activities against malignant and non-malignant human cell lines. Compound 1 displayed weak cytotoxic activity against the human melanoma cell line A2058 (~50% survival at 50 µM). No activity was detected against biofilm formation or C. albicans at 50 µM, or against bacterial growth at 100 µM nor against the production of cytokines by the human acute monocytic leukemia cell line THP-1 at 50 µM.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Bacteria/growth & development , Basidiomycota/chemistry , Candida albicans/growth & development , Sesquiterpenes , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Cyclohexanones/chemistry , Cyclohexanones/isolation & purification , Cyclohexanones/pharmacology , Epoxy Compounds/chemistry , Epoxy Compounds/isolation & purification , Epoxy Compounds/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology
7.
Mar Drugs ; 19(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34822511

ABSTRACT

The marine environment is potentially a prolific source of small molecules with significant biological activities. In recent years, the development of new chromatographic phases and the progress in cell and molecular techniques have facilitated the search for marine natural products (MNPs) as novel pharmacophores and enhanced the success rate in the selection of new potential drug candidates. However, most of this exploration has so far been driven by anticancer research and has been limited to a reduced number of taxonomic groups. In this article, we report a test study on the screening potential of an in-house library of natural small molecules composed of 285 samples derived from 57 marine organisms that were chosen from among the major eukaryotic phyla so far represented in studies on bioactive MNPs. Both the extracts and SPE fractions of these organisms were simultaneously submitted to three different bioassays-two phenotypic and one enzymatic-for cytotoxic, antidiabetic, and antibacterial activity. On the whole, the screening of the MNP library selected 11 potential hits, but the distribution of the biological results showed that SPE fractionation increased the positive score regardless of the taxonomic group. In many cases, activity could be detected only in the enriched fractions after the elimination of the bulky effect due to salts. On a statistical basis, sponges and molluscs were confirmed to be the most significant source of cytotoxic and antimicrobial products, but other phyla were found to be effective with the other therapeutic targets.


Subject(s)
Antineoplastic Agents/pharmacology , Aquatic Organisms , Animals , Antineoplastic Agents/chemistry , Chemical Fractionation , Drug Discovery , Mollusca , Porifera
8.
Front Microbiol ; 12: 730740, 2021.
Article in English | MEDLINE | ID: mdl-34659158

ABSTRACT

The emergence of drug-resistant bacteria is increasing rapidly in all parts of the world, and the need for new antibiotics is urgent. In our continuous search for new antimicrobial molecules from under-investigated Arctic marine microorganisms, a marine fungus belonging to the family Lulworthiaceae (Lulworthiales, Sordariomycetes, and Ascomycota) was studied. The fungus was isolated from driftwood, cultivated in liquid medium, and studied for its potential for producing antibacterial compounds. Through bioactivity-guided isolation, a novel sulfated biarylic naphtho-α-pyrone dimer was isolated, and its structure was elucidated by spectroscopic methods, including 1D and 2D NMR and HRMS. The compound, named lulworthinone (1), showed antibacterial activity against reference strains of Staphylococcus aureus and Streptococcus agalactiae, as well as several clinical MRSA isolates with MICs in the 1.56-6.25 µg/ml range. The compound also had antiproliferative activity against human melanoma, hepatocellular carcinoma, and non-malignant lung fibroblast cell lines, with IC50 values of 15.5, 27, and 32 µg/ml, respectively. Inhibition of bacterial biofilm formation was observed, but no eradication of established biofilm could be detected. No antifungal activity was observed against Candida albicans. During the isolation of 1, the compound was observed to convert into a structural isomer, 2, under acidic conditions. As 1 and 2 have high structural similarity, NMR data acquired for 2 were used to aid in the structure elucidation of 1. To the best of our knowledge, lulworthinone (1) represents the first new bioactive secondary metabolite isolated from the marine fungal order Lulworthiales.

9.
IMA Fungus ; 12(1): 21, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34372938

ABSTRACT

Marine fungi remain poorly covered in global genome sequencing campaigns; the 1000 fungal genomes (1KFG) project attempts to shed light on the diversity, ecology and potential industrial use of overlooked and poorly resolved fungal taxa. This study characterizes the genomes of three marine fungi: Emericellopsis sp. TS7, wood-associated Amylocarpus encephaloides and algae-associated Calycina marina. These species were genome sequenced to study their genomic features, biosynthetic potential and phylogenetic placement using multilocus data. Amylocarpus encephaloides and C. marina were placed in the Helotiaceae and Pezizellaceae (Helotiales), respectively, based on a 15-gene phylogenetic analysis. These two genomes had fewer biosynthetic gene clusters (BGCs) and carbohydrate active enzymes (CAZymes) than Emericellopsis sp. TS7 isolate. Emericellopsis sp. TS7 (Hypocreales, Ascomycota) was isolated from the sponge Stelletta normani. A six-gene phylogenetic analysis placed the isolate in the marine Emericellopsis clade and morphological examination confirmed that the isolate represents a new species, which is described here as E. atlantica. Analysis of its CAZyme repertoire and a culturing experiment on three marine and one terrestrial substrates indicated that E. atlantica is a psychrotrophic generalist fungus that is able to degrade several types of marine biomass. FungiSMASH analysis revealed the presence of 35 BGCs including, eight non-ribosomal peptide synthases (NRPSs), six NRPS-like, six polyketide synthases, nine terpenes and six hybrid, mixed or other clusters. Of these BGCs, only five were homologous with characterized BGCs. The presence of unknown BGCs sets and large CAZyme repertoire set stage for further investigations of E. atlantica. The Pezizellaceae genome and the genome of the monotypic Amylocarpus genus represent the first published genomes of filamentous fungi that are restricted in their occurrence to the marine habitat and form thus a valuable resource for the community that can be used in studying ecological adaptions of fungi using comparative genomics.

10.
Molecules ; 26(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070798

ABSTRACT

A series of novel quinoline-based tetracyclic ring-systems were synthesized and evaluated in vitro for their antiplasmodial, antiproliferative and antimicrobial activities. The novel hydroiodide salts 10 and 21 showed the most promising antiplasmodial inhibition, with compound 10 displaying higher selectivity than the employed standards. The antiproliferative assay revealed novel pyridophenanthridine 4b to be significantly more active against human prostate cancer (IC50 = 24 nM) than Puromycin (IC50 = 270 nM) and Doxorubicin (IC50 = 830 nM), which are used for clinical treatment. Pyridocarbazoles 9 was also moderately effective against all the employed cancer cell lines and moreover showed excellent biofilm inhibition (9a: MBIC = 100 µM; 9b: MBIC = 100 µM).


Subject(s)
Indole Alkaloids/pharmacology , Quinolines/chemical synthesis , Quinolines/pharmacology , Anti-Infective Agents/pharmacology , Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Indole Alkaloids/metabolism , Plasmodium falciparum/drug effects , Quinolines/metabolism , Structure-Activity Relationship
11.
Angew Chem Int Ed Engl ; 60(6): 3229-3237, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33107670

ABSTRACT

Dehydroalanine (Dha) and dehydrobutyrine (Dhb) display considerable flexibility in a variety of chemical and biological reactions. Natural products containing Dha and/or Dhb residues are often found to display diverse biological activities. While the (Z) geometry is predominant in nature, only a handful of metabolites containing (E)-Dhb have been found thus far. Here we report discovery of a new antimicrobial peptide, albopeptide, through NMR analysis and chemical synthesis, which contains two contiguous unsaturated residues, Dha-(E)-Dhb. It displays narrow-spectrum activity against vancomycin-resistant Enterococcus faecium. In-vitro biochemical assays show that albopeptide originates from a noncanonical NRPS pathway featuring dehydration processes and catalysed by unusual condensation domains. Finally, we provide evidence of the occurrence of a previously untapped group of short unsaturated peptides in the bacterial kingdom, suggesting an important biological function in bacteria.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Antimicrobial Cationic Peptides/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Aminobutyrates/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Evaluation, Preclinical , Drug Resistance, Bacterial/drug effects , Enterococcus faecium/drug effects , Multigene Family , Nuclear Magnetic Resonance, Biomolecular , Peptide Biosynthesis, Nucleic Acid-Independent , Peptide Synthases/genetics , Peptide Synthases/metabolism , Stereoisomerism , Streptomyces/enzymology , Streptomyces/metabolism
12.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751755

ABSTRACT

Turgencin A, a potent antimicrobial peptide isolated from the Arctic sea squirt Synoicum turgens, consists of 36 amino acid residues and three disulfide bridges, making it challenging to synthesize. The aim of the present study was to develop a truncated peptide with an antimicrobial drug lead potential based on turgencin A. The experiments consisted of: (1) sequence analysis and prediction of antimicrobial potential of truncated 10-mer sequences; (2) synthesis and antimicrobial screening of a lead peptide devoid of the cysteine residues; (3) optimization of in vitro antimicrobial activity of the lead peptide using an amino acid replacement strategy; and (4) screening the synthesized peptides for cytotoxic activities. In silico analysis of turgencin A using various prediction software indicated an internal, cationic 10-mer sequence to be putatively antimicrobial. The synthesized truncated lead peptide displayed weak antimicrobial activity. However, by following a systematic amino acid replacement strategy, a modified peptide was developed that retained the potency of the original peptide. The optimized peptide StAMP-9 displayed bactericidal activity, with minimal inhibitory concentrations of 7.8 µg/mL against Staphylococcus aureus and 3.9 µg/mL against Escherichia coli, and no cytotoxic effects against mammalian cells. Preliminary experiments indicate the bacterial membranes as immediate and primary targets.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Biological Products/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Amino Acid Sequence/genetics , Animals , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Aquatic Organisms/genetics , Biological Products/pharmacology , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Humans , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/chemical synthesis , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Sequence Analysis, Protein , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity
13.
Mar Drugs ; 18(3)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192075

ABSTRACT

Microalgae have been shown to be excellent producers of lipids, pigments, carbohydrates, and a plethora of secondary metabolites with possible applications in the pharmacological, nutraceutical, and cosmeceutical sectors. Recently, various microalgal raw extracts have been found to have anti-inflammatory properties. In this study, we performed the fractionation of raw extracts of the diatom Cylindrotheca closterium, previously shown to have anti-inflammatory properties, obtaining five fractions. Fractions C and D were found to significantly inhibit tumor necrosis factor alpha (TNF-⍺) release in LPS-stimulated human monocyte THP-1 cells. A dereplication analysis of these two fractions allowed the identification of their main components. Our data suggest that lysophosphatidylcholines and a breakdown product of chlorophyll, pheophorbide a, were probably responsible for the observed anti-inflammatory activity. Pheophorbide a is known to have anti-inflammatory properties. We tested and confirmed the anti-inflammatory activity of 1-palmitoyl-sn-glycero-3-phosphocholine, the most abundant lysophosphatidylcholine found in fraction C. This study demonstrated the importance of proper dereplication of bioactive extracts and fractions before isolation of compounds is commenced.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chlorophyll/pharmacology , Diatoms , Lysophosphatidylcholines/pharmacology , Tumor Necrosis Factor-alpha/drug effects , Anti-Inflammatory Agents/chemistry , Chlorophyll/chemistry , Humans , Lysophosphatidylcholines/chemistry , Oceans and Seas , THP-1 Cells/drug effects , THP-1 Cells/metabolism
14.
Molecules ; 25(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979050

ABSTRACT

Streptomyces remains one of the prolific sources of structural diversity, and a reservoir to mine for novel natural products. Continued screening for new Streptomyces strains in our laboratory led to the isolation of Streptomyces sp. RK44 from the underexplored areas of Kintampo waterfalls, Ghana, Africa. Preliminary screening of the metabolites from this strain resulted in the characterization of a new 2-alkyl-4-hydroxymethylfuran carboxamide (AHFA) 1 together with five known compounds, cyclo-(L-Pro-Gly) 2, cyclo-(L-Pro-L-Phe) 3, cyclo-(L-Pro-L-Val) 4, cyclo-(L-Leu-Hyp) 5, and deferoxamine E 6. AHFA 1, a methylenomycin (MMF) homolog, exhibited anti-proliferative activity (EC50 = 89.6 µM) against melanoma A2058 cell lines. This activity, albeit weak is the first report amongst MMFs. Furthermore, the putative biosynthetic gene cluster (ahfa) was identified for the biosynthesis of AHFA 1. DFO-E 6 displayed potent anti-plasmodial activity (IC50 = 1.08µM) against P. falciparum 3D7. High-resolution electrospray ionization mass spectrometry (HR ESIMS) and molecular network assisted the targeted-isolation process, and tentatively identified six AHFA analogues, 7-12 and six siderophores 13-18.


Subject(s)
Streptomyces/metabolism , Antimalarials/adverse effects , Antineoplastic Agents/adverse effects , Cell Line, Tumor , Humans , Multigene Family/genetics , Peptides/adverse effects , Peptides/metabolism , Signal Transduction/drug effects , Spectrometry, Mass, Electrospray Ionization
15.
Nat Prod Res ; 34(14): 2059-2064, 2020 Jul.
Article in English | MEDLINE | ID: mdl-30784299

ABSTRACT

The new guanidine alkaloid Dendrobeaniamine A (1) was isolated from the organic extract of the Arctic marine bryozoan Dendrobeania murrayana. The chemical structure of 1 was elucidated by spectroscopic experiments, including 1D and 2D NMR and HRESIMS analysis. Compound 1 is a lipoamino acid, consisting of a C12 fatty acid anchored to the amino acid arginine. The bioactivity of 1 was evaluated using cellular and biochemical assays, but the compound did not show cytotoxic, antimicrobial, anti-inflammatory or antioxidant activities.


Subject(s)
Alkaloids/isolation & purification , Bryozoa/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Fatty Acids/chemistry , Fatty Acids/isolation & purification , Guanidine/chemistry , Molecular Structure , Spectrum Analysis
16.
J Med Chem ; 62(22): 10167-10181, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31647655

ABSTRACT

In this work, we demonstrate that the indole-oxazole-pyrrole framework of the breitfussin family of natural products is a promising scaffold for kinase inhibition. Six new halogenated natural products, breitfussin C-H (3 - 8) were isolated and characterized from the Arctic, marine hydrozoan Thuiaria breitfussi. The structures of two of the new natural products were also confirmed by total synthesis. Two of the breitfussins (3 and 4) were found to selectively inhibit the survival of several cancer cell lines, with the lowest IC50 value of 340 nM measured against the drug-resistant triple negative breast cancer cell line MDA-MB-468, while leaving the majority of the tested cell lines not or significantly less affected. When tested against panels of protein kinases, 3 gave IC50 and Kd values as low as 200 and 390 nM against the PIM1 and DRAK1 kinases, respectively. The activity was confirmed to be mediated through ATP competitive binding in the ATP binding pocket of the kinases. Furthermore, evaluation of potential off-target and toxicological effects, as well as relevant in vitro ADME parameters for 3 revealed that the breitfussin scaffold holds promise for the development of selective kinase inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/chemistry , Arctic Regions , Binding Sites , Biological Products/isolation & purification , Biological Products/pharmacology , Cell Line, Tumor , Embryo, Nonmammalian/drug effects , Female , Humans , Hydrocarbons, Brominated/chemistry , Hydrozoa/chemistry , Indoles/chemistry , Mice , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/toxicity , Proto-Oncogene Proteins c-pim-1/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Toxicity Tests , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Zebrafish/embryology
17.
Eur J Med Chem ; 183: 111671, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31536892

ABSTRACT

The rapid emergence and spread of multi-resistant bacteria have created an urgent need for new antimicrobial agents. We report here a series of amphipathic α,α-disubstituted ß-amino amide derivatives with activity against 30 multi-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including isolates with extended spectrum ß-lactamase - carbapenemase (ESBL-CARBA) production. A variety of halogenated aromatic side-chains were investigated to improve antimicrobial potency and minimize formation of Phase I metabolites. Net positive charge and cationic character of the derivatives had an important effect on toxicity against human cell lines. The most potent and selective derivative was the diguanidine derivative 4e with 3,5-di-brominated benzylic side-chains. Derivative 4e displayed minimum inhibitory concentrations (MIC) of 0.25-8 µg/mL against Gram-positive and Gram-negative reference strains, and 2-32 µg/mL against multi-resistant clinical isolates. Derivative 4e showed also low toxicity against human red blood cells (EC50 > 200 µg/mL), human hepatocyte carcinoma cells (HepG2: EC50 > 64 µg/mL), and human lung fibroblast cells (MRC-5: EC50 > 64 µg/mL). The broad-spectrum antimicrobial activity and low toxicity of diguanylated derivatives such as 4e make them attractive as lead compounds for development of novel antimicrobial drugs.


Subject(s)
Amides/chemistry , Anti-Infective Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Amides/chemical synthesis , Amides/pharmacology , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Halogenation , Humans , Mice , Microbial Sensitivity Tests
18.
SLAS Discov ; 24(3): 398-413, 2019 03.
Article in English | MEDLINE | ID: mdl-30616481

ABSTRACT

Compound screening in biological assays and subsequent optimization of hits is indispensable for the development of new molecular research tools and drug candidates. To facilitate such discoveries, the European Research Infrastructure EU-OPENSCREEN was founded recently with the support of its member countries and the European Commission. Its distributed character harnesses complementary knowledge, expertise, and instrumentation in the discipline of chemical biology from 20 European partners, and its open working model ensures that academia and industry can readily access EU-OPENSCREEN's compound collection, equipment, and generated data. To demonstrate the power of this collaborative approach, this perspective article highlights recent projects from EU-OPENSCREEN partner institutions. These studies yielded (1) 2-aminoquinazolin-4(3 H)-ones as potential lead structures for new antimalarial drugs, (2) a novel lipodepsipeptide specifically inducing apoptosis in cells deficient for the pVHL tumor suppressor, (3) small-molecule-based ROCK inhibitors that induce definitive endoderm formation and can potentially be used for regenerative medicine, (4) potential pharmacological chaperones for inborn errors of metabolism and a familiar form of acute myeloid leukemia (AML), and (5) novel tankyrase inhibitors that entered a lead-to-candidate program. Collectively, these findings highlight the benefits of small-molecule screening, the plethora of assay designs, and the close connection between screening and medicinal chemistry within EU-OPENSCREEN.


Subject(s)
Cooperative Behavior , Drug Discovery/methods , Drug Evaluation, Preclinical , Europe , High-Throughput Screening Assays , Humans , Structure-Activity Relationship
19.
Bioorg Chem ; 84: 106-114, 2019 03.
Article in English | MEDLINE | ID: mdl-30500520

ABSTRACT

The marine environment remains a rich source for the discovery and development of novel bioactive compounds. The present paper describes the design, synthesis and biological evaluation of a library of small molecule heterocyclic mimetics of the marine 2,5-diketopiperazine barettin which is a powerful natural antioxidant. By mainly focusing on the influence from the brominated indole and heterocyclic core of barettin, a library of 19 compounds was prepared. The compounds comprised a heterocyclic core, either a 2,5 diketopiperazine, an imidazolidinedione or a thioxothiazolidinone, which were mainly monosubstituted with ranging bulky substituents. The prepared compounds were screened for activity in a cellular lipid peroxidation assay using HepG2 cells. Several of the synthetic compounds showed antioxidant properties superior to the positive control barettin. Two of the prepared compounds displayed inhibitory activity similar to commercial antioxidants with significant inhibition at low µg/mL concentrations. The toxicity of the compounds was also investigated against MRC-5 lung fibroblasts and none of the included compounds displayed any toxicity at 50 µg/mL.


Subject(s)
Antioxidants/pharmacology , Heterocyclic Compounds/pharmacology , Lipid Peroxidation/drug effects , Peptides, Cyclic/chemistry , Small Molecule Libraries/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Hep G2 Cells , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/isolation & purification , Humans , Molecular Structure , Small Molecule Libraries/chemistry , Small Molecule Libraries/isolation & purification , Structure-Activity Relationship
20.
Mycology ; 11(3): 230-242, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-33062384

ABSTRACT

During a research cruise in 2016, we isolated fungi from sediments, seawater, driftwood, fruiting bodies, and macroalgae using three different media to assess species richness and potential bioactivity of cultivable marine fungi in the High Arctic region. Ten stations from the Svalbard archipelago (73-80 °N, 18-31 °E) were investigated and 33 fungal isolates were obtained. These grouped into 22 operational taxonomic units (OTUs) using nuc rDNA internal transcribed spacer regions (ITS1-5.8S-ITS2 = ITS) with acut-off set at 98% similarity. The taxonomic analysis showed that 17 OTUs belonged to Ascomycota, one to Basidiomycota, two to Mucoromycota and two were fungal-like organisms. The nuc rDNA V1-V5 regions of 18S (18S) and D1-D3 regions of 28S (28S) were sequenced from representative isolates of each OTU for comparison to GenBank sequences. Isolates of Lulworthiales and Eurotiales were the most abundant, with seven isolates each. Among the 22 OTUs, nine represent potentially undescribed species based on low similarity to GenBank sequences and 10 isolates showed inhibitory activity against Gram-positive bacteria in an agar diffusion plug assay. These results show promise for the Arctic region as asource of novel marine fungi with the ability to produce bioactive secondary metabolites with antibacterial properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...